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The problem of obtaining a numerical solution for the steady flow between two 
coaxial infinite disks, one fixed and porous, the other rotating, is reduced by 
von Kkm&n’s hypothesis to solution of a system of nonlinear equations. A 
Newton-type iteration results in several solutions to these equations, as a number 
of authors have already indicated. Nevertheless, an interval in which only one 
solution is found exists for small values of the Reynolds number based on the 
angular velocity of the rotating disk, the distance between the disks and the 
kinematic viscosity of the fluid. At large values of this Reynolds number, two 
solutions appear and have been the subject of intense controversy. 

In  this paper, both physical and numerical arguments are presented which 
support a Batchelor-type solution for the flow between infinite disks, in which 
part of the fluid rotates as a solid body. The other solution, following Stewartson, 
assumes that the velocity of the fluid outside the boundary layers is entirely 
axial. This only seems to be verified experimentally when the distance between 
the disks is large compared with the (finite) radius of the disks. 

1. Introduction 
Because of its theoretical and practical interest, the problem of laminar flow 

between two parallel disks has been treated, under unsteady as well as steady 
boundary conditions, in numerous articles, of which a certain number are cited 
in the references. Nevertheless, analyses of the problem based upon numerical 
methods are often contradictory, at  least in the case of flow at high Reynolds 
number. Batchelor (1951) and Stewartson (1953) made different postulates about 
the nature of the flow which coincide, respectively, in certain regions with those 
considered by von K k m h  (1921) and Bodewadt (l940), who calculated two 
particular solutions representing flow in the presence of a single disk. The present 
authors, in a previous treatment of the unsteady flow between coaxial disks, 
indicated that the solutions in the steady case may be multiple in character in 
agreement with those found by Mellor, Chappel & Stokes (1968). Greenspan 
(1972) cast doubt on this character and on the numericalintegrity of the solutions 
by these latter authors and by Rogers & Lance (1962) and Pearson (1965 b ) .  

We shall limit ourselves here to the case of laminar steady flow between a disk 
turning with an arbitrary angular velocity a, and a fixed disk, parallel to the 
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first, through which uniformly distributed suction or blowing is possible. In com- 
parison with the results presented by different authors, the influence of the 
parameters controlling the numerical solution of the problem is analysed and, in 
particular, the question of the initial conditions which must be imposed upon the 
flow variables is discussed. 

The numerical method used is the iterative procedure of Newton. The results 
are compared with those deduced from the algorithm of Greenspan (1972) and 
the Runge-Kutta method. Use is made of the results obtained by letting the 
time T tend towards infinity in the unsteady case treated by Pearson (1965 b)  and 
Florent, Nguyen & Vo (1973). 

Regions in which a unique numerical solution exists are defined as functions 
of the suction or blowing at  the surface of the fixed disk. Other regions are found 
in which multiple solutions are identified, of which two are a priori physically 
possible. The first corresponds to  a flow field with the fluid turning en bloc in 
a zone lying between the boundary layers developing near the disks. This was 
noted by Batchelor (1951) and in this paper i t  will be called the Batchelor-type 
solution. The second corresponds to the configuration postulated by Stewartson 
(1953), in which the velocity outside the boundary layers has only an axial com- 
ponent. This is the Stewartson-type solution. In  the case of no flow through the 
fixed disk, only the Batchelor type of solution has been confirmed experimentally. 

2. Equations of motion and quest for a solution 
We shall briefly review the establishment of the equations of the problem. Let 

us consider two coaxial disks of infinite radius lying in the planes 2 = 0 and Z = a. 
The former disk, through which uniform blowing or suction (of velocity W,) may 
be applied, is stationary. The latter is rotating with a constant angular velocity 
Qo. The kinematic viscosity and density of the fluid are respectively v and p.  
The flow is assumed to be laminar and incompressible. 

By symmetry, the problem is described by the Navier-Stokes equations 
written in cylindrical co-ordinates. As for the unsteady case treated by Florent 
et al. (1973) it  is convenient to choose the distance a between the disks as the 
reference length and v/a as the reference velocity. The dimensionless radial, 
tangential and axial velocity components are u, v and w, whilst r and x are the 
radial and axial co-ordinates normalized with respect to a. Taking also pv2/a2 as 
the reference pressure, we obtain the Navier-Stokes equations in the following 
form : 

a(ru)/ar + a(rw)/az = 0. 
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The boundary conditions are 

u = 0, v = 0, w = Woa/v a t  z = 0, 

u = 0, v = ra2Qo/v, w = 0 at z = 1. 

With the reference quantities chosen, we obtain a blowing Reynolds number 
R, = Woa/v and a rotation Reynolds number R, = Qoa2/v, relating the rotation 
and the distance between the disks. 

In  order to reduce the number of spatial variables to one, we shall adopt the 
hypothesis of von KBrmBn, that the axial velocity is independent of the radial 
co-ordinate, i.e. w = f(z). It follows from the equation of continuity and the 
transverse momentum equation that 

u=--ly 2 f'( 2 ), v = M z ) .  

Substituting these expressions for u, v and w into the Navier-Stokes equations 
and eliminating the pressure by differentiating the first and third equations with 
respect to z and r respectively, one finds that the unknown functions f(z) and g(z )  
must satisfy the system 

O < z < l ,  1 fiV - f f  - 4gg' = 0, 

fg '  - f 'g - g" = 0, 

with the boundary conditions 

(1 b )  I f(0) = 4, f ' ( 0 )  = 0, g(0) = 0, 
f(1) = 0, f'(1) = 0, g(1) = R,. 

For very small Reynolds numbers, analytical solutions exist in the form of double 
series in terms of the Reynolds numbers, the limiting form being described by 
Florent & Nguyen (1971). Over other Reynolds number ranges, particularly for 
high values of R,, it  is necessary to  go to a numerical solution. 

With f and g known, the pressure distribution can be calculated. Using the 
momentum equations one obtains 

(2) p = &-2 w + llr(4. 

24 + i f ' 2  - f f 1' +f" - 2g2 = 0, 

$+-lf"f'= 2 0, 4' = 0. 

The new unknown functions 4 and $ which define the pressure are given by 

It follows that 4 is a constant in the steady-state case and can easily be deter- 
mined using the boundary conditions at  z = 0 or z = 1. 

3. Numerical method 
Numerical solutions of the differential system (1 a )  with boundary conditions 

(1 b )  have been given by several authors cited in the references. The most widely 
used numerical procedure is the Runge-Kutta method. This requires imposing 
three starting values, of g' (O) ,  f"(0) and f"'(0). Recently Greenspan (1972) has 
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proposed a new algorithm which, according to the author, leads to a rapid 

Before its use, let us first recall the main points of the iterative method of 
Newton. This consists of numerically calculating the values 4 and Gi of the 
functionsf@) and g(z) satisfying the system (1) at the point z = x j .  The z interval 
[O ,  11 is divided into n equal parts Az = l/n, such that z3 = (j - 2) Ax. Writing the 
terms of the system (1) in finite-difference form, and denoting the first and second 
equations respectively by xl, and xZ, i, one obtains the following system : 

olution with a convenient choice of numerical parameters. 

xl, = (Az)-*(~$.-~-- 44-1 - 6 4  - 44+1 - 4+2) \ 

for 3 < j  < n + l .  

The use of central differences in the implicit scheme above assures a satis- 
factory accuracy, but necessitates the introduction of two supplementary points 
on the sides: z1 = - AZ and x,+, = 1 + Az. The values Fl and Fn+, at these points 
are deduced from the boundary conditions (1 b) ,  which can be written as 

(4) 
F, = R,, G, = 0, Fl = F3, 

Fn+Z = 0, Gn+2 = Rr, -Q+3 = Fn+1. 

We note that the values of g(x )  at z1 and z,+, do not appear in the system (3). 
This system and (4) together furnish 2(n - 1) nonlinear equations. We can con- 
sider the 2(n- 1) functions x1,3 and xZ,i as functions of the 2(n- 1)  variables 
F,, F4,. .., Fn+l and G,, G,, .. ., Gn+l. To start the iterative procedure, we prescribe 
first approximations 4. and G, to the solution of (3), and suppose that the differ- 
ences A 4  and AGi from the exact solution (p,, F4, . . . , Fn+l, 6,, , . . . , cn+,> can be 
calculated from 

= F j + A q ,  aj = Gi+AGi for 3 <j < n + l .  ( 5 )  

Developing xl, and xz, as Taylor series and neglecting partial derivatives of 
order greater than one, the differences A 4 .  and AGi are approximated by the 
following linear system written in matrix form: 

= 0, 
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The new values calculated from ( 5 )  will then provide a better approximation 
to the solution. Using these new values the procedure is repeated until the 
absolute values of all the functions xl, and xz, become less than some prescribed 
positive number E .  

The calculations were carried out using an IBM-370-155 computer. 

4. Discussion of the numerical results without blowing 
We shall in turn consider the influence of the choice of the parameters E and Ax 

and the starting values imposed on the functions f and g on the accuracy and 
form of the solutions. 

Let us recall that a Batchelor-type solution is one where the fluid outside the 
boundary layers developing over the disks rotates like a solid. In  the case of the 
Stewartson-type solution, the flow is purely in the axial direction outside the 
boundary layer. 

In  the following numerical calculations we have taken lei < 0-5. However, in 
order to check the accuracy of the results, we also carried out the calculations for 
a few typical cases with 181 < 0.05. The results differed by at most lO-4%, even 
for a case like R, = 1000, where the velocity gradients are very important. 

On the other hand the initial values chosen for f and g have a great influence on 
both the speed of convergence and the form of the h a 1  solution. In  the following 
figures initial values leading to Batchelor-type, Stewartson-type or divergent 
solutions are denoted respectively by the letters B, S and D. 

Let us first consider the case where initially f is taken as zero and g takes any 
form satisfying the boundary conditions. For R, = 500 (figure 1) it was found that 
for certain starting values of g the iteration diverges, whiIst for others only two 
distinct solutions exist, at least for the very wide range of values of g chosen. One 
of these solutions is of Batchelor type, the other of Stewartson type, and they are 
identical with those obtained by these authors with an appropriate change of 
co-ordinates. Criteria for the change from one solution to another would seem to 
be very complicated (figure 1) .  In  fact, in addition to the rotation Reynolds 
number, the final solution depends on the starting form of g(x )  as well as g'(0) and 
g'(1). Similar results were obtained for the case R, = 1000 (figure 2). One notes 
that, as in the case R, = 500 (figure 1), an initial linear variation of g (with f E 0 )  
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FIGURE 1. ----, starting values for g withf E 0;  -, final solutions from steady solution 
and from time-dependent solution when T -+ 03. R, = 500, R, = 0. 
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FIGURE 2 .  ----, starting values for g with f 0; -, our final solutions, Az = 0.05; 
-.-, Greenspan (1972); -*.-, Pearson (1965). R, = 1000, R, = 0. 
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FIGURE 3. Influence of Az on numerical results. ----, starting values forf and g; -, our 
final solution, Az = 0.02; 0 ,  our final solution, Az = 0.05; ---, Greenspan (1972). 
R, = 1000, R, = 0. 

results in a Stewartson-type solution, which is in disagreement with the results 
deduced from the unsteady calculation. However if one imposes a triangular 
form on f (figure 3), analogous t o  that given by Greenspan (1972), with g linear, 
one finds, to within the Batchelor-type solution already obtained using 
different starting conditions. Here we can see the importance of the algorithm, 
which could easily define paths to different solutions from the same initial 
assumptions. On the other hand, the results given by Pearson (1965b) for an 
unsteady flow set in motion by an impulse correspond approximately to our 
Batchelor-type solution (figure 2). If we take our results for the unsteady case 
R,(T) = 1000( 1 - e-QT), where T-too,? as initial conditions on f and g, we obtain 
agreement to within with our steady-state solution of Batchelor type. 
This solution, as will be seen later, is experimentally confirmed. 

We have chosen Az = 0.05 (n = 20) for almost all the calculations presented 
here. With Ax = 0.02 or 0.05 in the case B, = 0, R, = 1000, we found the same 
results for g (figure 3). But we note that, if we take Ax = 0.1, the solution can 
differ completely from the case Az = 0.05, although it is still of one of the two 
types already found. For example, for R, = 0 and R, = 400, we obtained 
Batchelor- and Stewartson-type solutions by taking Ax = 0.05 and 0.1, respec- 
tively, with g linear and f 3 0 initially. For higher Reynolds numbers (R, = 0, 
R, = 1000) no solutions were found with Az = 0.1, which is not surprising in view 

t T is considered as infinite when the final value of R, is within 1 yo of the steedy-state 
value ORB is aiming to obtain. 
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FIGURE 4. -, final numerical solution; ----, starting values forf; -. - , starting values 
for g ;  -..-, starting values for f and g taken from time-dependent case R,(T) = 100 x 
(1 -e-gT) at T = 0.6; A,  theoretical results from Dorfman (1967); 0 ,  theoretical results 
from Pearson (1965b). R, = 100, R, = 0. 

of the large velocity gradients. On the other hand, for smaller Reynolds numbers, 
the choice of Az is less important, and even taking Az = 0.1 will provide a 
comparable solution, which is almost identical, provided that R, < 50. 

It must also be recalled that the numerical method chosen has an important 
influence on the nature of the resulting solution. Thus in the test case R, = 0, 
B, = 1000, the Runge-Kutta method only leads to a Stewartson-type solution, 
and not to that of Batchelor type, which has only been verified recently, in 
particular by work on unsteady flows. 

However, if the previous results pose the question of the existence of a multi- 
plicity of solutions of the present problem, the numerical results indicate that at  
lower Reynolds numbers only one solution is possible. For example, for R, = 0 
and R, = 100 (figure 4)) the solution is the same to within lo-* % for all the initial 
conditions on f and g mentioned. The Runge-Kutta method provides identical 
results, consistent with the experimental results of Mellor et ul. (1968) as well as 
those of Florent et ul. (1973). 

On the basis of the present numerical results, we shall now define, in terms of the 
rotation Reynolds number, the regions where one, two or even several solutions 
exist. The form of the solution is easily specified by the tangential velocity g(z) ,  
with g'(0) negligible or not, corresponding to the Stewartson- and Batchelor-type 
solutions respectively. Figure 5 indicates the existence of three regions delimited 
by R, = 200 and 300. 
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R, 

FIGURE 5 .  -, theoretical results from steady case; 0 ,  theoretical results from 
time-dependent case RJT) = R,(1 -e-DT), when T -+ CO, R, = 0. 

Region I is where only one solution was found for a wide variety of initial 
conditions on f and g. In  region 111, R, > 300, two solutions exist. That of 
Batchelor type is the only one which is obtained from the solution of the unsteady 
rotating-disk problem when the motion tends to a steady state as T + co. The 
Stewartson-type solution is only obtained by the Runge-Kutta method and that 
of Newton with certain initial values off and g, as previously mentioned. Lastly, 
region 11, 200 < R, < 300, is where a Batchelor-type solution is found, with the 
solution varying continuously from those of region I. What differentiates the 
two regions is that the initial conditions for the Batchelor-type solution must be 
chosen very close to the actual solution to ensure convergence in region 11. 

5. Comparison between experimental and theoretical results without 

The installation contains two disks 30 em in diameter. The speed of the rotating 
disk can be varied up to 12000r.p.m. The distance between the disks is con- 
tinuously adjustable, whilst still preserving parallelism. This is essential, since 
any slight asymmetry can considerably change the flow pattern. Static pressures 
were obtained from holes of diameter 0.2 mm along two perpendicular diameters 
of the fixed disk. Hot-wire measurements were also carried out using a wall probe 
whose design was based on a study of the influence of probe supports in strong 
velocity gradients given by Plorent & Thiolet (1969). For comparison purposes 

blowing 
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FIGURE 6 ( a ) .  For legend see facing page. 

we also used the same probe with the support placed between the disks. The 
measurements were limited to regions of laminar flow. 

We tried to determine the regions where the above theory, based on infinite 
disks, applies to disks of finite dimensions. This involves finding the limits of the 
validity of the numerical solution, by checking basic theoretical hypotheses such 
as the independence of the axial component of velocity of radial distance. To 
achieve this, a comparison has been made between the pressure gradients 
measured over the fixed disk, the mean velocity field and the corresponding 
numerical solutions. 
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FIGURE 6. Radial pressure distributions on the fixed disk. - , theoretical curve ; 
---_ , experimental results from laminar regime; -.- , experimental results froin fully 
turbulent regime. (a )  a/Rd = &. ( b )  a/Rd = -&K. 

A 0 v IJ 0 n 
(a )  R, 1256 942 628 392 308 

( b )  R,. 1256 1256 1884 1570 2512 2198 

If Po denotes the pressure at  the centre, which for a given fluid depends upon 
the distance between the disks and the speed of rotation, then from (2) 

For varying Reynolds number, a plot of 

as function of r = ?/a should consist theoretically of one straight line of unit slope, 
where $th is the numerical value ca,lculated for 4. 

Prom figures 6 (a)  and ( b ) ,  corresponding to  different distances between the 
disks and speeds of rotation, we note that the Reynolds number R, provides 
a good characterization of the problem in an annular region, where the experi- 
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FIGURE 7. Variation of radial pressure gradient with rotating Reynolds number. -, 
numerical results, Batchelor-type solution; -. . - , numerical results, Stewartson-type 
solution; ----, experimental results. 
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mental azp/ar2 corresponds to that deduced from the theoretical solution. More- 
over the assumption that the flow is laminar in this region was also confirmed. 

Figure 7 shows that the overall data concerning the function 4 defining azp/ar2 
are in good agreement with the theory for Reynolds numbers below 2000. Com- 
parison of this evolution of Q with those deduced from the velocity fields of 
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FIG~RE 8. Experimental and theoretical results for various Reynolds numbers. -, 
theoretical curve; a, r = 6; 0 ,  r = 8; V, T = 12; 0, probe with support between disks, 
T = 8. (a)  R, = 110-4. (6) R, = 993.8. 
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FIGURE 9. Variation of g(0.4)/R, with rotating Reynolds number R,. - , theoretical 
curve, Batchelor-type solution; ---- , experimental results from fully turbulent regime ; 
- . -, experimental results from laminar regime. 
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Batchelor and Stewartson indicates that only the Batchelor-type solution agrees 
with the experimental data. 

Limiting ourselves to the laminar regions, where the experimental and theo- 
retical a2p/ar2 are in agreement, we see from figures 8 (a) and ( b )  that the two sets 
of mean velocity profiles are consistent, and correspond to the Batchelor-type 
solution. It is important to underline the large differences arising from the 
particular anemometry techniques used. Only the wall probe provided data con- 
sistent with the theory. The same probe with a support in the flow between the 
disks both slowed down the flow and modified the overall pattern. 

The ratio of the rotational speed of the fluid to that of the disk, represented 
approximately by g(O*4)/Rr, varied in the same manner as the previous results as 
regards the limit R, < 2000 (figure 9). For a/Rd > & (Rd = radius of disks) two 
stable experimental flow patterns were observed over a range of Reynolds num- 
bers which increased with the distance between the disks. We shall call these two 
regimes T and L. 

Regime T corresponds to fully developed turbulent flow between the disks. 
For regime L the flow is laminar inside an annular region, and corresponds to an 
accelerating flow. It will be seen from figure 6 ( b )  that for a given Reynolds 
number only regime L furnishes data for a2p/ar2 in agreement with the theory. 
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FIGURE 10. Tangential velocity distributions. -, theoretical curve, Batchelor-type solu- 
tion; 0, experimental results, FIR, = i; 0, experimental results, ?/Rd = 9. Open symbols, 
laminar flow; filled symbols, fully turbulent flow. a/R, = &, R, = 1100. 
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FIGURE 12. Irduence of blowing or sucking on the form of theoretical 
tangential velocity distribution. R,. = 100. 

The experimental change from T to L occurs automatically at  a Reynolds number 
which increases with the distance between the disks. Below this limit the change 
from T to L or vice versa can be triggered by a small perturbation. 

For R, < 2000 (figure lo), the tangential velocity profiles corresponding to 
each of these regimes show that good agreement with the numerical calculations 
is obtained in the laminar configuration, which is characterized by an annular 
region where similarity exists and where a2p/ar2 remains constant. In the turbu- 
lent regime, similarity ceases to exist (figure 10) and azp/ar2 is never constant 
(figure 8 b) .  For R, > 2000, the agreement fails but the experimental profile still 
remains of Batchelor type (figure 11) .  

6. Theoretical influence of sucking or blowing 
Figure 12 indicates that the solutions tend to be respectively of the Stewartson 

and Batchelor types for the cases of blowing and sucking through the fixed disk, 
which seems physically plausible. In  figure 13, one finds three characteristic 
zones, as in the case R, = 0. The region with a unique numerical solution is larger 
in the case of blowing than for sucking. However, results deduced from evolution 
of an unsteady flow (T + 00) always give the solution corresponding to the largest 
couple acting on the fixed disk. 
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FIGURE 13. Theoretical results. -, steady case, Batchelor-type solution; -. -, 
case, Stewartson-type solution; 0 ,  time-dependent case, R,(T) = R,(1- eBT) when 

steady 
T + W .  

7. Discussion 
As Rott & Lewellen (1965) have pointed out, the Batchelor-type solution is not 

a singular solution of the boundary-layer equations. In  the light of the previous 
numerical results, we shall try to justify the validity of one solution, that of 
Batchelor type. 

Our own results, as well as those of Mellor et al. (1968) and those of Pearson 
(1965 b), which were all obtained using different algorithms, lead us to believe that 
several solutions exist. Greenspan (1972) asserts the uniqueness of his solution, 
with strong restrictions on his convergence criteria or ‘relaxation parameters ’. 
However, he does seem to have omitted to verify, at  least for the case R, = 1000, 
R, = 0, the dominant influence of the starting values off and g on the final 
solution. In  fact we have noticed, in particular, that the convergence criterion in 
our algorithm is much less important than the choice of the starting values of 
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f and g.  For a wide variety of the latter values, only two types of solutions were 
found, corresponding respectively to those of Batchelor and Stewartson. We 
cannot of course claim that these are the only solutions, since it is impossible to 
try all possible initial combinations off and g. But to our knowledge the algorithm 
used here is the only one which leads to a solution corresponding to the experi- 
mental results, even when the Reynolds number is high. 

To summarize, i t  is not possible with the present state of development of the 
numerical analysis of the steady case to confirm one or other of the two types of 
solution. Nevertheless we have certain indications of the uniqueness of the solu- 
tions from our results in unsteady radial flows. We have found that, if the 
rotating disk accelerates from rest to some arbitrary steady state, then the final 
solution, as time tends to infinity, is always of Batchelor type, independently of 
the Reynolds number R,. The results of Pearson (1965 b) ,  for the case of a rotating 
disk subjected to an impulse, indicate the same tendency. Also our calculations 
show that a numerical perturbation of the Stewartson-type solution for 
R,(T) > 3000, in an unsteady evolution, gives rapidly a Batchelor-type solution. 

Figure 5 is also very significant. The value of g’(0) and the couple arising from 
the tangential friction acting on the fixed disk increase together up to  R, - 200. 
Afterwards, g’(0) can either continue to increase monotonically or drop abruptly 
to virtually zero. The first possibility, corresponding to the Batchelor-type solu- 
tion, thus seems more plausible, in view of the discontinuity represented by the 
evolution of the Stewartson-type solution. 

From the physical point of view, the two types of solution both seem possible. 
For a given fluid, a large Reynolds number R, implies either a large distance 
between the disks or a high speed of rotation. In the first case, one can eventually 
envisage a negligible couple acting on the fixed disk, that is to say a Stewartson- 
type solution. In  the second case, the influence of the rotating disk on the 
stationary one is much greater, which leads us to consider a Batchelor-type 
solution. 

However, this generally accepted reasoning is invalidated by the following two 
facts. First, it does not explain why only one numerical solution has been found 
by every author in the case of small Reynolds numbers. Second, it is based on 
a physical configuration with disks of finite radius. If one imagines infinite disks 
as postulated in the formulation of the problem, the fluid between the boundary 
layers would turn like EL solid at  a speed lower than that of the rotating disk. 

The previous assertions are based on experimental observations. In  fact, from 
our measurements between disks 30cm in diameter, we have noted that the 
torque acting on the fixed disk is never zero and can be measured as long as the 
distance between the disks remains less than 5 em. This couple increases with the 
speed of rotation. We have further observed that the fluid is in solid rotation in 
the plane halfway between the disks, and that the theoretical and experimental 
velocity profiles are the same as long at R, < 2000. For small distances between 
the disks the results of Schultz-Grunow (1935) confirm this result, as well as our 
experimental results given in figure 9, and those of Mellor et al. (1968), which 
justify the existence of the Batchelor-type solution. In  addition, if the flow 
develops in the space between two disks and a bounding cylinder attached to the 
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stationary disk, it has been found by Rogers & Lance (1960)) and Maxworthy 
(1963) that the fluid is in solid rotation. It may be noted that only the Batchelor- 
type solution is found with this configuration. 

8. Conclusion 
The numerical resolution of the steady radial flow between a stationary and 

a rotating disk effectively furnishes several possible solutions. This multiplicity 
of solutions is probably inherent in the nonlinear character of the system of basic 
equations, rather than inaccuracies in the numerical procedure. Nevertheless, 
there exists, for low Reynolds numbers, a region where only one solution seems 
to occur, which is independent of the numerical method. 

At higher Reynolds numbers two numerical solutions were found. We have 
presented various arguments both from the numerical and the physical point of 
view favouring one type of solution, that of Batchelor type, in which a part of the 
fluid between the disks is in solid-body rotation. 

On the other hand, with certain restrictions on the distance between the disks 
and the speed of rotation, two stable solutions have been also observed experi- 
mentally. The first one, in disagreement with the numerical results, is a turbulent 
configuration. In  this case, the similarity (v = rg) does not exist and a2p/ar2 is 
never constant. The second, in good agreement with the numerical results for 
R, < 2000, is characterized by an annular region where similarity exists and where 
a2plar2 remains constant. 

The authors would like to thank the National Research Council of Canada for 
their financial support (Grant A-7924) and Dr E. J. Dickinson of Laval University 
for valuable discussions. 
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